近几十年,我国经济, 以圆管带式输送机机身为研究对象,针对其结构的特殊性,利用ansys的强大功能,对机身进行有限元分析,得出***位移变形,应变和***应力。并对结果分析,又对不同截面尺寸的机身对比分析,优化尺寸结构,后对其经济性分析。, 工程机械伸缩臂结构紧凑、工作效率高,广泛应用在起重机、高空作业车等工程机械设备中。工作中,伸缩臂为直接承载部件通过变幅和伸缩运动来实现对货物的起吊和搬运。现今伸缩臂多采用由高强度钢板焊接而成的箱型结构,并在伸缩臂臂体内部或者外部安装伸缩油缸来完成伸缩臂的伸缩运动。各节伸缩臂臂体之间主要依靠臂体与滑块的接触作用来传递载荷,因此,各节伸缩臂臂体与滑块接触处的应力分布比较复杂且明显高于其他区域,接触区域应力水平决定了伸缩臂的承载能力。为了降低臂体接触区域应力,提高臂体承载能力,终实现臂体优化设计,迫切需要对伸缩臂臂体与滑块接触区域应力进行研究。伸缩臂接触区域应力计算常用方法为解析法和有限元法。, 本文针对简单的六边形截面形状伸缩臂,基于叠加原理提出了整体弯曲应力叠加局部弯曲应力的伸缩臂接触区应力解析计算数学模型。该模型首先计算在额定载荷作用下臂体整体弯曲应力,然后将接触区的臂体分离出来,建立局部分析模型求解局部弯曲应力,后将这两项应力叠加得到接触区的总应力。在局部应力分析模型中,提出了臂体间接触载荷沿滑块边部狭窄区域分布的假设,该假设较传统的臂体间接触载荷沿滑块整个表面均匀分布的假设更符合实际情况。针对较复杂的八边形截面形状伸缩臂,建立了参数化有限元模型。采用面面接触单元来模拟伸缩臂臂体与滑块之间的接触关系,选择危险工况对伸缩臂进行了有限元静力结构分析,通过与实验样机的应力测试结果进行比较,验证了有限元分析结果的准确性。为提高伸缩臂整体模型计算效率,同时保证臂体接触区域应力计算精度,本文开发了平衡力系边界条件子模型方法:将从整机粗网格模型分析结果提取的平衡力系边界条件施加到准确构建的子模型来准确求解局部结构应力。当由于整体模型简化,使得局部几何模型的刚度与真实结构刚度有显著差异时,该方法解决了应用传统子模型方法将从整机模拟结果得到的位移插值边界条件直接施加到重新构建的准确子模型的边界来求解导致子模型边界应力与整机模型中的应力相差甚远的问题。该方法也为大型机械的局部结构分析提供了一种有效的分析方法。应用新开发的子模型方法,分析了滑块几何参数对八边形截面伸缩臂臂体间接触区域应力影响规律,为滑块尺寸优化设计提供了理论依据,使其能够充分降低接触区域应力。后对某八边形截面伸缩臂结构进行了优化设计,以伸缩臂截面几何形状参数以及相邻臂体搭接长度参数为设计变量,以伸缩臂结构的***等效应力为强度约束条件,变幅平面***静位移和回转平面***静位移为刚度约束条件,以薄壁件的局部屈曲为结构失稳约束条件,实现了臂体轻量化设计。新子模型法的运用使结构优化效率显著提高,优化后臂体结构满足强度、刚度设计要求,与传统设计相比减重量达17.8%,优化后伸缩臂结构已经应用于新产品。